1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
| from __future__ import print_function import time
""" Setting debug to true will display more informations about the lattice, the bounds, the vectors... """ debug = True
""" Setting strict to true will stop the algorithm (and return (-1, -1)) if we don't have a correct upperbound on the determinant. Note that this doesn't necesseraly mean that no solutions will be found since the theoretical upperbound is usualy far away from actual results. That is why you should probably use `strict = False` """ strict = False
""" This is experimental, but has provided remarkable results so far. It tries to reduce the lattice as much as it can while keeping its efficiency. I see no reason not to use this option, but if things don't work, you should try disabling it """ helpful_only = True dimension_min = 7
def helpful_vectors(BB, modulus): nothelpful = 0 for ii in range(BB.dimensions()[0]): if BB[ii,ii] >= modulus: nothelpful += 1
print(nothelpful, "/", BB.dimensions()[0], " vectors are not helpful")
def matrix_overview(BB, bound): for ii in range(BB.dimensions()[0]): a = ('%02d ' % ii) for jj in range(BB.dimensions()[1]): a += '0' if BB[ii,jj] == 0 else 'X' if BB.dimensions()[0] < 60: a += ' ' if BB[ii, ii] >= bound: a += '~' print(a)
def remove_unhelpful(BB, monomials, bound, current): if current == -1 or BB.dimensions()[0] <= dimension_min: return BB
for ii in range(current, -1, -1): if BB[ii, ii] >= bound: affected_vectors = 0 affected_vector_index = 0 for jj in range(ii + 1, BB.dimensions()[0]): if BB[jj, ii] != 0: affected_vectors += 1 affected_vector_index = jj
if affected_vectors == 0: print("* removing unhelpful vector", ii) BB = BB.delete_columns([ii]) BB = BB.delete_rows([ii]) monomials.pop(ii) BB = remove_unhelpful(BB, monomials, bound, ii-1) return BB
elif affected_vectors == 1: affected_deeper = True for kk in range(affected_vector_index + 1, BB.dimensions()[0]): if BB[kk, affected_vector_index] != 0: affected_deeper = False if affected_deeper and abs(bound - BB[affected_vector_index, affected_vector_index]) < abs(bound - BB[ii, ii]): print("* removing unhelpful vectors", ii, "and", affected_vector_index) BB = BB.delete_columns([affected_vector_index, ii]) BB = BB.delete_rows([affected_vector_index, ii]) monomials.pop(affected_vector_index) monomials.pop(ii) BB = remove_unhelpful(BB, monomials, bound, ii-1) return BB return BB
""" Returns: * 0,0 if it fails * -1,-1 if `strict=true`, and determinant doesn't bound * x0,y0 the solutions of `pol` """ def boneh_durfee(pol, modulus, mm, tt, XX, YY): """ Boneh and Durfee revisited by Herrmann and May finds a solution if: * d < N^delta * |x| < e^delta * |y| < e^0.5 whenever delta < 1 - sqrt(2)/2 ~ 0.292 """
PR.<u, x, y> = PolynomialRing(ZZ) Q = PR.quotient(x*y + 1 - u) polZ = Q(pol).lift()
UU = XX*YY + 1
gg = [] for kk in range(mm + 1): for ii in range(mm - kk + 1): xshift = x^ii * modulus^(mm - kk) * polZ(u, x, y)^kk gg.append(xshift) gg.sort()
monomials = [] for polynomial in gg: for monomial in polynomial.monomials(): if monomial not in monomials: monomials.append(monomial) monomials.sort() for jj in range(1, tt + 1): for kk in range(floor(mm/tt) * jj, mm + 1): yshift = y^jj * polZ(u, x, y)^kk * modulus^(mm - kk) yshift = Q(yshift).lift() gg.append(yshift) for jj in range(1, tt + 1): for kk in range(floor(mm/tt) * jj, mm + 1): monomials.append(u^kk * y^jj)
nn = len(monomials) BB = Matrix(ZZ, nn) for ii in range(nn): BB[ii, 0] = gg[ii](0, 0, 0) for jj in range(1, ii + 1): if monomials[jj] in gg[ii].monomials(): BB[ii, jj] = gg[ii].monomial_coefficient(monomials[jj]) * monomials[jj](UU,XX,YY)
if helpful_only: BB = remove_unhelpful(BB, monomials, modulus^mm, nn-1) nn = BB.dimensions()[0] if nn == 0: print("failure") return 0,0
if debug: helpful_vectors(BB, modulus^mm) det = BB.det() bound = modulus^(mm*nn) if det >= bound: print("We do not have det < bound. Solutions might not be found.") print("Try with highers m and t.") if debug: diff = (log(det) - log(bound)) / log(2) print("size det(L) - size e^(m*n) = ", floor(diff)) if strict: return -1, -1 else: print("det(L) < e^(m*n) (good! If a solution exists < N^delta, it will be found)")
if debug: matrix_overview(BB, modulus^mm)
if debug: print("optimizing basis of the lattice via LLL, this can take a long time")
BB = BB.LLL()
if debug: print("LLL is done!")
if debug: print("looking for independent vectors in the lattice") found_polynomials = False for pol1_idx in range(nn - 1): for pol2_idx in range(pol1_idx + 1, nn): PR.<w,z> = PolynomialRing(ZZ) pol1 = pol2 = 0 for jj in range(nn): pol1 += monomials[jj](w*z+1,w,z) * BB[pol1_idx, jj] / monomials[jj](UU,XX,YY) pol2 += monomials[jj](w*z+1,w,z) * BB[pol2_idx, jj] / monomials[jj](UU,XX,YY)
PR.<q> = PolynomialRing(ZZ) rr = pol1.resultant(pol2)
if rr.is_zero() or rr.monomials() == [1]: continue else: print("found them, using vectors", pol1_idx, "and", pol2_idx) found_polynomials = True break if found_polynomials: break
if not found_polynomials: print("no independant vectors could be found. This should very rarely happen...") return 0, 0 rr = rr(q, q)
soly = rr.roots()
if len(soly) == 0: print("Your prediction (delta) is too small") return 0, 0
soly = soly[0][0] ss = pol1(q, soly) solx = ss.roots()[0][0]
return solx, soly
def example():
N = 98871082998654651904594468693622517613869880791884929588100914778964766348914919202255397776583412976785216592924335179128220634848871563960167726280836726035489482233158897362166942091133366827965811201438682117312550600943385153640907629347663140487841016782054145413246763816202055243693289693996466579973 e = 76794907644383980853714814867502708655721653834095293468287239735547303515225813724998992623067007382800348003887194379223500764768679311862929538017193078946067634221782978912767213553254272722105803768005680182504500278005295062173004098796746439445343896868825218704046110925243884449608326413259156482881
delta = 0.274
m = 8
t = int((1-2*delta) * m) X = 2*floor(N^delta) Y = floor(N^(1/2))
P.<x,y> = PolynomialRing(ZZ) A = int((N+1)/2) pol = 1 + x * (A + y)
if debug: print("=== checking values ===") print("* delta:", delta) print("* delta < 0.292", delta < 0.292) print("* size of e:", int(log(e)/log(2))) print("* size of N:", int(log(N)/log(2))) print("* m:", m, ", t:", t)
if debug: print("=== running algorithm ===") start_time = time.time()
solx, soly = boneh_durfee(pol, e, m, t, X, Y)
if solx > 0: print("=== solution found ===") if False: print("x:", solx) print("y:", soly)
d = int(pol(solx, soly) / e) print("private key found:", d) else: print("=== no solution was found ===")
if debug: print(("=== %s seconds ===" % (time.time() - start_time)))
if __name__ == "__main__": example()
|